Friday, 23 August 2013

Data Mining Explained

Overview
Data mining is the crucial process of extracting implicit and possibly useful information from data. It uses analytical and visualization techniques to explore and present information in a format which is easily understandable by humans.

Data mining is widely used in a variety of profiling practices, such as fraud detection, marketing research, surveys and scientific discovery.

In this article I will briefly explain some of the fundamentals and its applications in the real world.

Herein I will not discuss related processes of any sorts, including Data Extraction and Data Structuring.

The Effort
Data Mining has found its application in various fields such as financial institutions, health-care & bio-informatics, business intelligence, social networks data research and many more.

Businesses use it to understand consumer behavior, analyze buying patterns of clients and expand its marketing efforts. Banks and financial institutions use it to detect credit card frauds by recognizing the patterns involved in fake transactions.

The Knack
There is definitely a knack to Data Mining, as there is with any other field of web research activities. That is why it is referred as a craft rather than a science. A craft is the skilled practicing of an occupation.

One point I would like to make here is that data mining solutions offers an analytical perspective into the performance of a company depending on the historical data but one need to consider unknown external events and deceitful activities. On the flip side it is more critical especially for Regulatory bodies to forecast such activities in advance and take necessary measures to prevent such events in future.

In Closing
There are many important niches of Web Data Research that this article has not covered. But I hope that this article will provide you a stage to drill down further into this subject, if you want to do so!

Should you have any queries, please feel free to mail me. I would be pleased to answer each of your queries in detail.



Source: http://ezinearticles.com/?Data-Mining-Explained&id=4341782

No comments:

Post a Comment