Friday, 3 July 2015

SFTW: Scraping data with Google Refine

For the first Something For The Weekend of 2012 I want to tackle a common problem when you’re trying to scrape a collection of webpage: they have some sort of structure in their URL like this, where part of the URL refers to the name or code of an entity:     http://www.ltscotland.org.uk/scottishschoolsonline/schools/freemealentitlement.asp?iSchoolID=5237521

  tp://www.ltscotland.org.uk/scottishschoolsonline/schools/freemealentitlement.asp?iSchoolID=5237629

    ttp://www.ltscotland.org.uk/scottishschoolsonline/schools/freemealentitlement.asp?iSchoolID=5237823

In this instance, you can see that the URL is identical apart from a 7 digit code at the end: the ID of the school the data refers to.

There are a number of ways you could scrape this data. You could use Google Docs and the =importXML formula, but Google Docs will only let you use this 50 times on any one spreadsheet (you could copy the results and select Edit > Paste Special > Values Only and then use the formula a further 50 times if it’s not too many – here’s one I prepared earlier).

And you could use Scraperwiki to write a powerful scraper – but you need to understand enough coding to do so quickly (here’s a demo I prepared earlier).

A middle option is to use Google Refine, and here’s how you do it.

Assembling the ingredients

With the basic URL structure identified, we already have half of our ingredients. What we need  next is a list of the ID codes that we’re going to use to complete each URL.

An advanced search for “list seed number scottish schools filetype:xls” brings up a link to this spreadsheet (XLS) which gives us just that.

The spreadsheet will need editing: remove any rows you don’t need. This will reduce the time that the scraper will take in going through them. For example, if you’re only interested in one local authority, or one type of school, sort your spreadsheet so that you can delete those above or below them.

Now to combine  the ID codes with the base URL.

Bringing your data into Google Refine

Open Google Refine and create a new project with the edited spreadsheet containing the school IDs.

At the top of the school ID column click on the drop-down menu and select Edit column > Add column based on this column…

In the New column name box at the top call this ‘URL’.

In the Expression box type the following piece of GREL (Google Refine Expression Language):

“http://www.ltscotland.org.uk/scottishschoolsonline/schools/freemealentitlement.asp?iSchoolID=”+value

(Type in the quotation marks yourself – if you’re copying them from a webpage you may have problems)

The ‘value’ bit means the value of each cell in the column you just selected. The plus sign adds it to the end of the URL in quotes.

In the Preview window you should see the results – you can even copy one of the resulting URLs and paste it into a browser to check it works. (On one occasion Google Refine added .0 to the end of the ID number, ruining the URL. You can solve this by changing ‘value’ to value.substring(0,7) – this extracts the first 7 characters of the ID number, omitting the ‘.0') UPDATE: in the comment Thad suggests “perhaps, upon import of your spreadsheet of IDs, you forgot to uncheck the importer option to Parse as numbers?”

Click OK if you’re happy, and you should have a new column with a URL for each school ID.

Grabbing the HTML for each page

Now click on the top of this new URL column and select Edit column > Add column by fetching URLs…

In the New column name box at the top call this ‘HTML’.

All you need in the Expression window is ‘value’, so leave that as it is.

Click OK.

Google Refine will now go to each of those URLs and fetch the HTML contents. As we have a couple thousand rows here, this will take a long time – hours, depending on the speed of your computer and internet connection (it may not work at all if either isn’t very fast). So leave it running and come back to it later.

Extracting data from the raw HTML with parseHTML

When it’s finished you’ll have another column where each cell is a bunch of HTML. You’ll need to create a new column to extract what you need from that, and you’ll also need some GREL expressions explained here.

First you need to identify what data you want, and where it is in the HTML. To find it, right-click on one of the webpages containing the data, and search for a key phrase or figure that you want to extract. Around that data you want to find a HTML tag like <table class=”destinations”> or <div id=”statistics”>. Keep that open in another window while you tweak the expression we come onto below…

Back in Google Refine, at the top of the HTML column click on the drop-down menu and select Edit column > Add column based on this column…

In the New column name box at the top give it a name describing the data you’re going to pull out.

In the Expression box type the following piece of GREL (Google Refine Expression Language):

value.parseHtml().select(“table.destinations”)[0].select(“tr”).toString()

(Again, type the quotation marks yourself rather than copying them from here or you may have problems)

I’ll break down what this is doing:

value.parseHtml()

parse the HTML in each cell (value)

.select(“table.destinations”)

find a table with a class (.) of “destinations” (in the source HTML this reads <table class=”destinations”>. If it was <div id=”statistics”> then you would write .select(“div#statistics”) – the hash sign representing an ‘id’ and the full stop representing a ‘class’.

[0]

This zero in square brackets tells Refine to only grab the first table – a number 1 would indicate the second, and so on. This is because numbering (“indexing”) generally begins with zero in programming.

.select(“tr”)

Now, within that table, find anything within the tag <tr>

.toString()

And convert the results into a string of text.

The results of that expression in the Preview window should look something like this:

<tr> <th></th> <th>Abbotswell School</th> <th>Aberdeen City</th> <th>Scotland</th> </tr> <tr> <th>Percentage of pupils</th> <td>25.5%</td> <td>16.3%</td> <td>22.6%</td> </tr>

This is still HTML, but a much smaller and manageable chunk. You could, if you chose, now export it as a spreadsheet file and use various techniques to get rid of the tags (Find and Replace, for example) and split the data into separate columns (the =SPLIT formula, for example).

Or you could further tweak your GREL code in Refine to drill further into your data, like so:

value.parseHtml().select(“table.destinations”)[0].select(“td”)[0].toString()

Which would give you this:

<td>25.5%</td>

Or you can add the .substring function to strip out the HTML like so (assuming that the data you want is always 5 characters long):

value.parseHtml().select(“table.destinations”)[0].select(“td”)[0].toString().substring(5,10)

When you’re happy, click OK and you should have a new column for that data. You can repeat this for every piece of data you want to extract into a new column.

Then click Export in the upper right corner and save as a CSV or Excel file.

Source: http://onlinejournalismblog.com/2012/01/13/sftw-scraping-data-with-google-refine/

Wednesday, 24 June 2015

Data Scraping - What Are Hand-Scraped Hardwood Floors and What Are the Benefits?

If you love the look of hardwood flooring with lots of character, then you may want to check out hand-scraped hardwood flooring. Hand-scraped wood provides a warm vintage look, providing the floor instant character. These types of scraped hardwoods are suitable for living rooms, dining rooms, hallways and bedrooms. But what exactly is hand-scraped hardwood flooring?

Well, it is literally what you think it is. Hand-scraped hardwood flooring is created by hand using specialized wood working tools to make each board unique and giving an overall "old worn" appearance.

At Innovation Builders we offer solid wood floors finished on site with an actual hand-scraping technique followed by stain and sealer. Solid wood floors are installed by an expert team of technicians who work each board with skilled craftsman-like attention to detail. Following the scraping procedure the floor is stained by hand with a customer selected stain color, and then protected with multiple coats of sealing and finishing polyurethane. This finishing process of staining, sealing and coating the wood floors contributes to providing the look and durability of an old reclaimed wood floor, but with today's tough, urethane finishes.

There are many, many benefits to hand-scraped wood flooring. Overall, these floors are extremely durable and hard wearing, providing years of trouble-free use. These wood floors remain looking newer for longer because the texture that the process provides hides the typical dents, dings and scratches that other floors can't hide so easily. That's great news for households with kids, dogs, and cats.

These types of wood flooring have another unique advantage as well. When you do scratch these floors during their lifetime, the scratches are easily repaired. As long as the scratch isn't too deep you can make them practically disappear without ever having to hire a professional. It's simple to hide the scratch by using a color-matched stain marker or repair kit that is readily available through local flooring distributors. These features make hand-scraped hardwood flooring a lot more durable and hassle-free to maintain than other types of wood flooring.

The expert processes utilized in the creation of these floors provides a custom look of worn wood with deep color and subtle highlights. When the light hits the wood at different times during the day, it provides an understated but powerful effect of depth and beauty. They instantly offer your rooms a rustic look full of character, allowing your home to become a warm and inviting environment. The rustic look of this wood provides a texture, style and rustic appeal that cannot be matched by any other type of flooring.

Hand-Scraped Hardwood Flooring is a floor that says welcome and adds a touch of elegance to any home. If you are looking to buy a new home and you haven't had the opportunity to see or feel hand scraped hardwoods, stop in any of the model homes at Innovation Builders in Keller, North Richland Hills or Grand Prairie, Texas and check it out!

Source: http://ezinearticles.com/?What-Are-Hand-Scraped-Hardwood-Floors-and-What-Are-the-Benefits?&id=6026646

Friday, 19 June 2015

Web scraping in under 60 seconds: the magic of import.io

Import.io is a very powerful and easy-to-use tool for data extraction that has the aim of getting data from any website in a structured way. It is meant for non-programmers that need data (and for programmers who don’t want to overcomplicate their lives).

I almost forgot!! Apart from everything, it is also a free tool (o_O)

The purpose of this post is to teach you how to scrape a website and make a dataset and/or API in under 60 seconds. Are you ready?

It’s very simple. You just have to go to http://magic.import.io; post the URL of the site you want to scrape, and push the “GET DATA” button. Yes! It is that simple! No plugins, downloads, previous knowledge or registration are necessary. You can do this from any browser; it even works on tablets and smartphones.

For example: if we want to have a table with the information on all items related to Chewbacca on MercadoLibre (a Latin American version of eBay), we just need to go to that site and make a search – then copy and paste the link (http://listado.mercadolibre.com.mx/chewbacca) on Import.io, and push the “GET DATA” button.

You’ll notice that now you have all the information on a table, and all you need to do is remove the columns you don’t need. To do this, just place the mouse pointer on top of the column you want to delete, and an “X” will appear.

Good news for those of us who are a bit more technically-oriented! There is a button that says “GET API” and this one is good to, well, generate an API that will update the data on each request. For this you need to create an account (which is also free of cost).

As you saw, we can scrape any website in under 60 seconds, even if it includes tons of results pages. This truly is magic, no? For more complex things that require logins, entering subwebs, automatized searches, et cetera, there is downloadable import.io software… But I’ll explain that in a different post.

Source: http://schoolofdata.org/2014/12/09/web-scraping-in-under-60-seconds-the-magic-of-import-io/

Monday, 8 June 2015

Scraping Services - Assuring Scraping Success with Proxy Data Scraping

Have you ever heard of "Data Scraping?" Data Scraping is the process of collecting useful data that has been placed in the public domain of the internet (private areas too if conditions are met) and storing it in databases or spreadsheets for later use in various applications. Data Scraping technology is not new and many a successful businessman has made his fortune by taking advantage of data scraping technology.

Sometimes website owners may not derive much pleasure from automated harvesting of their data. Webmasters have learned to disallow web scrapers access to their websites by using tools or methods that block certain ip addresses from retrieving website content. Data scrapers are left with the choice to either target a different website, or to move the harvesting script from computer to computer using a different IP address each time and extract as much data as possible until all of the scraper's computers are eventually blocked.

Thankfully there is a modern solution to this problem. Proxy Data Scraping technology solves the problem by using proxy IP addresses. Every time your data scraping program executes an extraction from a website, the website thinks it is coming from a different IP address. To the website owner, proxy data scraping simply looks like a short period of increased traffic from all around the world. They have very limited and tedious ways of blocking such a script but more importantly -- most of the time, they simply won't know they are being scraped.

You may now be asking yourself, "Where can I get Proxy Data Scraping Technology for my project?" The "do-it-yourself" solution is, rather unfortunately, not simple at all. Setting up a proxy data scraping network takes a lot of time and requires that you either own a bunch of IP addresses and suitable servers to be used as proxies, not to mention the IT guru you need to get everything configured properly. You could consider renting proxy servers from select hosting providers, but that option tends to be quite pricey but arguably better than the alternative: dangerous and unreliable (but free) public proxy servers.

There are literally thousands of free proxy servers located around the globe that are simple enough to use. The trick however is finding them. Many sites list hundreds of servers, but locating one that is working, open, and supports the type of protocols you need can be a lesson in persistence, trial, and error. However if you do succeed in discovering a pool of working public proxies, there are still inherent dangers of using them. First off, you don't know who the server belongs to or what activities are going on elsewhere on the server. Sending sensitive requests or data through a public proxy is a bad idea. It is fairly easy for a proxy server to capture any information you send through it or that it sends back to you. If you choose the public proxy method, make sure you never send any transaction through that might compromise you or anyone else in case disreputable people are made aware of the data.

A less risky scenario for proxy data scraping is to rent a rotating proxy connection that cycles through a large number of private IP addresses. There are several of these companies available that claim to delete all web traffic logs which allows you to anonymously harvest the web with minimal threat of reprisal. Companies such as offer large scale anonymous proxy solutions, but often carry a fairly hefty setup fee to get you going.

The other advantage is that companies who own such networks can often help you design and implementation of a custom proxy data scraping program instead of trying to work with a generic scraping bot. After performing a simple Google search, I quickly found one company (www.ScrapeGoat.com) that provides anonymous proxy server access for data scraping purposes. Or, according to their website, if you want to make your life even easier, ScrapeGoat can extract the data for you and deliver it in a variety of different formats often before you could even finish configuring your off the shelf data scraping program.

Whichever path you choose for your proxy data scraping needs, don't let a few simple tricks thwart you from accessing all the wonderful information stored on the world wide web!

Source: http://ezinearticles.com/?Assuring-Scraping-Success-with-Proxy-Data-Scraping&id=248993

Tuesday, 2 June 2015

On-line directory tree webscraping

As you surf around the internet — particularly in the old days — you may have seen web-pages like this:

The former image is generated by Apache SVN server, and the latter is the plain directory view generated for UserDir on Apache.

In both cases you have a very primitive page that allows you to surf up and down the directory tree of the resource (either the SVN repository or a directory file system) and select links to resources that correspond to particular files.

Now, a file system can be thought of as a simple key-value store for these resources burdened by an awkward set of conventions for listing the keys where you keep being obstructed by the ‘/‘ character.

My objective is to provide a module that makes it easy to iterate through these directory trees and produce a flat table with the following helpful entries:

Although there is clearly redundant data between the fields url, abspath, fname, name, ext, having them in there makes it much easier to build a useful front end.

The function code (which I won’t copy in here) is at https://scraperwiki.com/scrapers/apache_directory_tree_extractor/. This contains the functions ParseSVNRevPage(url) and ParseSVNRevPageTree(url), both of which return dicts of the form:

{'url', 'rev', 'dirname', 'svnrepo',

 'contents':[{'url', 'abspath', 'fname', 'name', 'ext'}]}

I haven’t written the code for parsing the Apache Directory view yet, but for now we have something we can use.

I scraped the UK Cave Data Registry with this scraper which simply applies the ParseSVNRevPageTree() function to each of the links and glues the output into a flat array before saving it:

lrdata = ParseSVNRevPageTree(href)

ldata = [ ]

for cres in lrdata["contents"]:

    cres["svnrepo"], cres["rev"] = lrdata["svnrepo"], lrdata["rev"]

    ldata.append(cres)

scraperwiki.sqlite.save(["svnrepo", "rev", "abspath"], ldata)

Now that we have a large table of links, we can make the cave image file viewer based on the query:

select abspath, url, svnrepo from swdata where ext=’.jpg’ order by abspath limit 500

By clicking on a reference to a jpg resource on the left, you can preview what it looks like on the right.

If you want to know why the page is muddy, a video of the conditions in which the data was gathered is here.

Image files are usually the most immediately interesting out of any unknown file system dump. And they can be made more interesting by associating meta-data with them (given that no convention for including interesting information in the EXIF sections of their file formats). This meta-data might be floating around in other files dumped into the same repository — eg in the form of links to them from html pages which relate to picture captions.

But that is a future scraping project for another time.

Source: https://scraperwiki.wordpress.com/2012/09/14/on-line-directory-tree-webscraping/

Thursday, 28 May 2015

Data Scraping Services - Things to take care while doing Web Scraping!!!

In the present day and age, web scraping word becomes most popular in data science. Basically web scraping is extracting the information from the websites using pre-written programs and web scraping scripts. Many organizations have successfully used web site scraping to build relevant and useful database that they use on a daily basis to enhance their business interests. This is the age of the Big Data and web scraping is one of the trending techniques in the data science.

Throughout my journey of learning web scraping and implementing many successful scraping projects, I have come across some great experiences we can learn from.  In this post, I’m going to discuss some of the approaches to take and approaches to avoid while executing web scraping.

User Proxies: Anonymously scraping data from websites

One should not scrape website with a single IP Address. Because when you repeatedly request the web page for web scraping, there is a chance that the remote web server might block your IP address preventing further request to the web page. To overcome this situation, one should scrape websites with the help of proxy servers (anonymous scraping). This will minimize the risk of getting trapped and blacklisted by a website. Use of Proxies to hide your identity (network details) to remote web servers while scraping data. You may also use a VPN instead of proxies to anonymously scrape websites.

Take maximum data and store it.

Do not follow “process the web page as it comes from the remote server”. Instead take all the information and store it to disk. This approach will be useful when your scraping algorithm breaks in the middle. In this case you don’t have to start scraping again. Never download the same content more than once as you are just wasting bandwidth. Try and download all content to disk in one go and then do the processing.

Follow strict rules in parsing:

Check various rules while parsing the information from the web site. For example if you expect a value to be a date then check that it’s really a date. This may greatly improve the quality of information. When you get unexpected data, then the algorithm need to be changed accordingly.

Respect Robots.txt

Robots.txt specifies the set of rules that should be followed by web crawlers and robots. I strongly advise you to consider and adjust your crawler to fully respect robots.txt. Robots.txt contains instructions on the exact pages that you are allowed to crawl, user-agent, and the requisite intervals between page requests. Following to these instructions minimizes the chance of getting blacklisted and banned from website owner.

Use XPath Smartly

XPath is a nice option to select elements of the HTML document more flexibly than CSS Selectors.  Be careful about HTML structure change through page to page so one xpath you made may be failed to extract data on another page due to changes in HTML structure.

Obey Website TOC:

Some websites make it absolutely apparent in their terms and conditions that they are particularly against to web scraping activities on their content. This can make you vulnerable against possible ethical and legal implications.

Test sample scrape and verify the data with actual scrape

Once you are done with web scraping project set up, you need to test it for sometimes. Check the extracted data. If something is not good, find out the cause and make changes accordingly and finally come to a perfect web scraping project.

Source: http://webdata-scraping.com/things-take-care-web-scraping/

Tuesday, 26 May 2015

Data Mining Services

Data Minng Services, through its data mining services can mine required data for you from any of the available sources. Over the years, we have successfully catered to wide variety of outsource data mining requirements, which specifies our competency in dealing with your data mining requirements.

Based on your requirements, we can mine data from your preferred data sources, or we will use our own reliable sources to mine the data required by you. We have been using automated as well manual data mining strategies to deliver superior data mining services.

Types of data mining services delivered by us

With an extensive variety of data mining services provided by us, you will definitely be able to find the most perfect service package to cater to your requirements. Below listed are just some of the data mining services offered by us:

•    Web data mining
•    Data extraction
•    Data capture
•    Data gathering
•    Collection of required data
•    Validation of data

Outsource data mining requirements to us, and we are sure that the data mining India unit of Hi-Tech BPO Services will be able to formulate the most appropriate and cost effective solutions to include your entire requirements.

Highlights of our data mining services:

•    Most affordable rates
•    Dedicated data mining India unit
•    Latest data mining technologies used to mine all required data
•    Data will be mined, gathered, processed and validated as per your requirements
•    Mined data can be directly included into your database

Competitive advantage of using our data mining services

To mine accurate and relevant data, some level of internet knowledge is essential. And it would also consume a lot of your valuable time. With our data mining services, we will take care of all your data mining tasks, while you look after your business and its core functions.

The affordably priced data mining services delivered by the data mining India unit will also help you to save considerable amount of your money, which you can put into more productive purposes.

Source: http://www.hitechbposervices.com/data-mining.php